Helly Property and Satisfiability of Boolean Formulas Defined on Set Systems

نویسندگان

  • Victor Chepoi
  • Nadia Creignou
  • Gernot Salzer
چکیده

We study the problem of satisfiability of Boolean formulas φ in conjunctive normal form whose literals have the form v ∈ S and express the membership of values to sets S of a given set system S. We establish the following dichotomy result. We show that checking the satisfiability of such formulas (called S-formulas) with three or more literals per clause is NP-complete except the trivial case when the intersection of all sets in S is nonempty. On the other hand, the satisfiability of S-formulas φ containing at most two literals per clause is decidable in polynomial time if S satisfies the Helly property, and is NP-complete otherwise (in the first case, we present an O(|φ| · |S| · |D|)-time algorithm for deciding if φ is satisfiable). Deciding whether a given set family S satisfies the Helly property can be done in polynomial time. We also overview several well-known examples of Helly families and discuss the consequences of our result to such set systems and its relationship with the previous work on the satisfiability of signed formulas in multiple-valued logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Model Property for Multi-Context Systems

Our general interest is to understand the inherent complexity of contextual reasoning. In this paper we establish the bounded model property for propositional multi-context systems with finite sets of bridge rules: the number of local models needed to satisfy a set of formulas in such systems is bounded by the number of formulas in that set plus the number of bridge rules of the system. Using t...

متن کامل

A Note on Satisfying Truth-Value Assignments of Boolean Formulas

In this paper we define a class of truth-value assignments, called bounded assignments, using a certain substitutional property. We show that every satisfiable Boolean formula has at least one bounded assignment. This allows us to show that satisfying truthvalue assignments of formulas in USAT can be syntactically defined in the language of classical propositional logic. We also discuss a possi...

متن کامل

A Lower Bound of 2n Conditional Branches for Boolean Satisfiability on Post Machines

We establish a lower bound of 2 conditional branches for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of n variables a set containing a Boolean formula to represent each Boolean function of n variables. The contradiction proof first assumes that there exists a Post machine (Post’s Formulation 1) that corr...

متن کامل

A Lower Bound for Boolean Satisfiability on Turing Machines

We establish a lower bound for deciding the satisfiability of the conjunction of any two Boolean formulas from a set called a full representation of Boolean functions of n variables a set containing a Boolean formula to represent each Boolean function of n variables. The contradiction proof first assumes that there exists a Turing machine with k symbols in its tape alphabet that correctly decid...

متن کامل

On Sets with Cardinality Constraints in Satisfiability Modulo Theories

Boolean Algebra with Presburger Arithmetic (BAPA) is a decidable logic that can express constraints on sets of elements and their cardinalities. Problems from verification of complex properties of software often contain fragments that belong to quantifier-free BAPA (QFBAPA). Deciding the satisfiability of QFBAPA formulas has been shown to be NP-complete using an eager reduction to quantifier-fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007